Weighted Bmo and Hankel Operators between Bergman Spaces
نویسندگان
چکیده
We introduce a family of weighted BMO spaces in the Bergman metric on the unit ball of C and use them to characterize complex functions f such that the big Hankel operators Hf and Hf̄ are both bounded or compact from a weighted Bergman space into a weighted Lesbegue space with possibly different exponents and different weights. As a consequence, when the symbol function f is holomorphic, we characterize bounded and compact Hankel operators Hf̄ between weighted Bergman spaces. In particular, this resolves two questions left open in [7, 12].
منابع مشابه
Weighted composition operators on weighted Bergman spaces and weighted Bloch spaces
In this paper, we characterize the bonudedness and compactness of weighted composition operators from weighted Bergman spaces to weighted Bloch spaces. Also, we investigate weighted composition operators on weighted Bergman spaces and extend the obtained results in the unit ball of $mathbb{C}^n$.
متن کاملLittle Hankel Operators between Bergman Spaces of the Right Half Plane
In this paper we consider a class of weighted integral operators on L2(0,∞) and show that they are unitarily equivalent to little Hankel operators between weighted Bergman spaces of the right half plane. We use two parameters α, β ∈ (−1,∞) and involve two weights to define Bergman spaces of the domain and range of the little Hankel operators. We obtained conditions for the Hankel integral opera...
متن کاملBMO ON STRONGLY PSEUDOCONVEX DOMAINS: HANKEL OPERATORS, DUALITY AND a-ESTIMATES
We study the condition that characterizes the symbols of bounded Hankel operators on the Bergman space of a strongly pseudoconvex domain and show that it is equivalent to BMO plus analytic. (Here we mean the Bergman metric BMO of Berger, Coburn and Zhu.) In the course of the proof we obtain new d -estimates that may be of independent interest. Some applications include a decomposition of BMO si...
متن کاملHankel Operators on Weighted Bergman Spaces and Norm Ideals
Consider Hankel operators Hf on the weighted Bergman space L 2 a(B, dvα). In this paper we characterize the membership of (H∗ fHf ) s/2 = |Hf | in the norm ideal CΦ, where 0 < s ≤ 1 and the symmetric gauge function Φ is allowed to be arbitrary.
متن کاملHolomorphic Besov Spaces on Bounded Symmetric Domains, II
The paper continues the study of a class of holomorphic Besov spaces on bounded symmetric domains which was initiated in [18]. Several new descriptions of these Besov spaces are given in terms of weighted Bergman projections and fractional differential operators. These new characterizations are then applied to obtain results about the duality of, and Hankel operators on, weighted Bergman spaces...
متن کامل